Dipl. Inf. Peter-Christian Quint

Position Wissenschaftlicher Mitarbeiter
Adresse Fachhochschule Lübeck, Fachbereich Elektrotechnik und Informatik
Peter-Christian Quint
Mönkhofer Weg 239
D-23562 Lübeck, Deutschland
Raum: 18-2.16
Telefon +49 (0)451 300-5759
E-Mail peter-christian.quint@fh-luebeck.de
Social ResearchGate, XING, Webseite (privat)

Interessen

Seit dem 1. Januar 2015 bin ich wissenschaftlicher Mitarbeiter im Fachbereich Elektrotechnik und Informatik an der Fachhochschule Lübeck. Ich beschäftige mich im Rahmen des Projektes „Cloud TRANSIT“ mit dem Problem der Provider-Abhängikeit beim Cloud Computing.

Lebenslauf

  • Geboren am 07. August 1983
  • Abitur 2005 am Luisen-Gymnasium Hamburg Bergedorf
  • Studium der Informatik mit dem Nebenfach Medizinische Informatik 2005-2012 an der Universität zu Lübeck
  • Geschäftsführer 2011 bis 2012 der H&Q GameFactory GmbH in Lübeck
  • Webentwickler 2013 bei LYNET in Lübeck
  • Softwareentwickler 2013 bis 2014 bei der Ärztekammer Schleswig-Holstein, Bad Segeberg
  • Seit 01. Januar 2015 wissenschaftlicher Mitarbeiter an der Fachhochschule Lübeck

Projekt

Veröffentlichungen


Artikel and Buchkapitel
[2017] Understanding Cloud-native Applications after 10 Years of Cloud Computing - A Systematic Mapping Study (Nane Kratzke, Peter-Christian Quint), In Journal of Systems and Software Elsevier, volume 126, 2017. [bib] [abstract]
It is common sense that cloud-native applications (CNA) are intentionally designed for the cloud. Although this understanding can be broadly used it does not guide and explain what a cloud-native application exactly is. The term "cloud-native" was used quite frequently in birthday times of cloud computing (2006) which seems somehow obvious nowadays. But the term disappeared almost completely. Suddenly and in the last years the term is used again more and more frequently and shows increasing momentum. This paper summarizes the outcomes of a systematic mapping study analyzing research papers covering "cloud-native" topics, research questions and engineering methodologies. We summarize research focuses and trends dealing with cloud-native application engineering approaches. Furthermore, we provide a definition for the term "cloud-native application" which takes all findings, insights of analyzed publications and already existing and well-defined terminology into account.
[2016] Vendor Lock-In im Cloud Computing! Was bringen Container und Container-Cluster? (Peter-Christian Quint), In OBJEKTspektrum, Ausgabe Online Themenspecial Microservices und Docker 2016, 2016. [bib]
[2016] Taming the Complexity of Elasticity, Scalability and Transferability in Cloud Computing - Cloud-Native Applications for SMEs (Peter-Christian Quint, Nane Kratzke), In International Journal on Advances in Networks and Services International Academy, Research, and Industry Association (IARIA), volume 9, 2016. [bib] [abstract]
Cloud computing enables companies getting computational and storage resources on demand. Especially when using features like elasticity and scaling, cloud computing can be a very powerful technology to run, e.g., a webservice without worries about failure by overload or wasting money by paid use of unneeded resources. For using these features, developers can use or implement cloud-native applications (CNA), containerized software running on an elastic platform. Nevertheless, a CNA can be complex at planning, installation and configuration, maintenance and searching for failures. Small and medium enterprises (SMEs) are mostly limited by their personnel and financial restrictions. So, using these offered services can facilitate a very fast realization of the software project. However, using these (proprietary) services it is often difficult to migrate between cloud vendors. This paper introduces C4S, an open source system for SMEs to deploy and operate their container application with features like elasticity, auto-scaling and load balancing. The system also supports transferability features for migrating containers between different Infrastructure as a Service (IaaS) platforms. Thus, C4S is a solution for SMEs to use the benefits of cloud computing with IaaS migration features to reduce vendor lock-in.
[2016] Project Cloud TRANSIT - Or to Simplify Cloud-native Application Provisioning for SMEs by Integrating Already Available Container Technologies (Nane Kratzke, Peter-Christian Quint, Derek Palme, Dirk Reimers), Chapter in European Project Space on Smart Systems, Big Data, Future Internet - Towards Serving the Grand Societal Challenges Scitepress (Verena Kantere, Barbara Koch, eds.), 2016. [bib]
[2015] How to Operate Container Clusters more Efficiently? Some Insights Concerning Containers, Software-Defined-Networks, and their sometimes Counterintuitive Impact on Network Performance (Nane Kratzke, Peter-Christian Quint), In International Journal On Advances in Networks and Services International Academy, Research, and Industry Association (IARIA), volume 8, 2015. [bib]
Konferenz Beiträge
[2016] Overcome Vendor Lock-In by Integrating Already Available Container Technologies - Towards Transferability in Cloud Computing for SMEs (Peter-Christian Quint, Nane Kratzke), In Proceedings of CLOUD COMPUTING 2016 (7th. International Conference on Cloud Computing, GRIDS and Virtualization), 2016. [bib]
[2016] ppbench - A Visualizing Network Benchmark for Microservices (Nane Kratzke, Peter-Christian Quint), In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016), 2016. [bib] [abstract]
Companies like Netflix, Google, Amazon, Twitter successfully exemplified elastic and scalable microservicearchitectures for very large systems. Microservice architectures are often realized in a way to deploy servicesas containers on container clusters. Containerized microservices often use lightweight and REST-based mech-anisms. However, this lightweight communication is often routed by container clusters through heavyweightsoftware defined networks (SDN). Services are often implemented in different programming languages addingadditional complexity to a system, which might end in decreased performance. Astonishingly it is quite com-plex to figure out these impacts in the upfront of a microservice design process due to missing and specializedbenchmarks. This contribution proposes a benchmark intentionally designed for this microservice setting. Weadvocate that it is more useful to reflect fundamental design decisions and their performance impacts in theupfront of a microservice architecture development and not in the aftermath. We present some findings regard-ing performance impacts of some TIOBE TOP 50 programming languages (Go, Java, Ruby, Dart), containers(Docker as type representative) and SDN solutions (Weave as type representative).
Powered by bibtexbrowser